
S E R G E A Y E R - H E I A - F R – I S C
C L A S S E S I S C - I D - 2 A / D / / 2 0 2 3 - 2 0 2 4

DEVELOPPEMENT BACKEND
WEBSERVICES / RESTFUL APIS

WEB SERVICES: A SHORT HISTORY

• Web sites until 2000

• The Programmable Web (1998)

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 2

HTML
HTTP

Web
browser

Web
server

SOAP/XML
(HTTP)

Web
browser
/client

Web
server

WSDL

WEB SERVICES: A SHORT HISTORY

• RESTful web services (2000)

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

JSON
HTTP

Web
browser
/client

Web
server

WADL

3

WEB SERVICES

• Definition by W3C: A software system designed to
support interoperable machine-to-machine
interaction over a network:
• Involving at least two devices: a (web) server and a client

(e.g. a browser).
• The network is IP, usually using HTTP.

• Usually categorized into two major classes:
• WS-* or Arbitrary web services
• REST-compliant web services

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 4

WS-* WEB SERVICES

• Functionalities and interfaces declared through
WSDL (Web Services Description Language) which is
a machine-processable format.

• Client requests and service response objects are
encapsulated using SOAP (Simple Object Access
Protocol) and transmitted over the network using
HTTP.

• These services are usually called WS-* or big web
services.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 5

RESTFUL WEB SERVICES

• Manipulation of representations of Web resources
using a uniform set of stateless operations
• At the core: resources
• Resources are uniquely identified through URIs (Unique

Resources Identifiers)
• Uses URIs to identify resources and HTTP as their service

interface
• RESTful web services for connected objects (smart

things) is usually known as the Web of Things.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 6

THE PROGRAMMABLE WEB

• The programmable web is not necessarily for
human consumption.
• Its data is intended as input to a software program that

does something interesting with it.
• The programmable web is relying on HTTP:

• HTTP is delivering documents in envelopes.
• HTTP does not care about what is in the envelope.

• HTTP is the one thing that all clients and services have in
common on the programmable web.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 7

TECHNOLOGIES OF THE
PROGRAMMABLE WEB

• HTTP: envelope format
• URI

• A RESTful, resource-oriented service exposes a URI for every
piece of data the client might want to access.

• A RPC/SOAP service exposes a URI for every process capable
of handling the Remote Procedure Call
• usually called the endpoint and usually unique.

• SOAP: envelope format, on top of HTTP, XML-based
• WSDL (Web Service Description Language): XML

vocabulary used to describe SOAP-based web services.
• WADL (Web Application Description Language): XML

vocabulary used to describe RESTful web services.
• Today, OpenAPI is often used as the standard for

specifying RESTful web services

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 8

WS-* VS RESTFUL WEB SERVICES

• The differences are in

• The way the client convey its intentions to the server:

• REST: Using the HTTP methods (standardized).

• SOAP: Using a specific method (like in any programming language)

• very likely using the POST HTTP method.

• The way the client tells to the server which part of the data set
to operate on (scoping information):

• REST: Using the URI path (like “…/search?q=REST”)

• resource oriented

• SOAP: Using the entity-body of the HTTP request.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 9

WS-* VS RESTFUL WEB SERVICES

• When using SOAP:

• Everything is in the envelope (and if you don’t open it, you

don’t understand the request and its response),

• When using a RESTful architecture:

• The request can be understood from the HTTP method and

from the URI.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 10

REST PRINCIPLES

• REST == “Representational State Transfer”
• Resource-based rather than action-based
• Representations moved from server to client
• REST is not an architecture but rather a set of design

criteria, which are
• Uniform Interface

• The method information is kept in the HTTP method.
• Stateless
• Cacheable
• Client-Server
• Layered System
• Code on Demand (optional)

• There are a number of architectures that meet those
criteria

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 11

RESOURCE BASED

• Things vs. actions (for SOAP-RPC)
• Nouns vs. verbs
• Example: “user data” vs. “get user data”

• Identified by URIs
• Multiple URIs may refer to the same resource

• Resources are separate from their representations
• Very important since there can also be several

representations of the same resource

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 12

RESOURCE-ORIENTED
ARCHITECTURE

• A resource:
• Something that can be stored on a computer and

represented as a stream of data (bits).
• A physical object
• An abstract concept

• Examples:
• Version 2.0 of a software release
• The latest release of a software
• The sales numbers for Q4 2015
• A list of bugs in a bug database
• A person
• The relationship between two persons

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 13

RESOURCE-ORIENTED
ARCHITECTURE

• Resources are on the web:
• A resource has to have at least one URI (name and address

of the resource).
• URIs should be descriptive

• Examples (from previous slide)
• http://www.heia-fr.ch/software/releases/2.0
• http://www.heia-fr.ch/software/releases/latest
• http://www.heia-fr.ch/sales/2015/Q4
• http://www.heia-fr.ch/bugs/open
• http://www.heia-fr.ch/person
• http://www.heia-fr.ch/relationships/person1;person2

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 14

http://www.heia-fr.ch/software/releases/2.0
http://www.heia-fr.ch/sales/2015/Q4
http://www.heia-fr.ch/bugs/open
http://www.heia-fr.ch/person

RESOURCE-ORIENTED
ARCHITECTURE

• Relationship between URIs and Resources
• Two resources cannot be the same
• More than one URI may refer to the same resource

• Example: the latest release may be version 2.0
• Every URI designates exactly one resource

• Addressability
• Statelessness

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 15

REPRESENTATIONS

• (Part of) the current state of the resource
• Any useful information about the state of a resource.
• Transferred between client and server.

• There can be multiple representations of the same
resource:
• A book can be represented with its cover image and

reviews used for advertise the book.
• The same book can be represented by an electronic copy

of the book that can be downloaded via HTTP when you
pay for it.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 16

REPRESENTATIONS

• Typically JSON or XML
• Can also be HTML or CSV or anything else.

• Example:
• Resource: person
• Service: contact information (GET)
• Representation:

• Name, address and phone number
• In JSON or XML format

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 17

UNIFORM INTERFACE

• Defines the interface between the client and the server
• Simplifies and decouples the architecture
• Typically,

• HTTP verbs / methods
• GET: retrieve the representation of a resource
• PUT: create a new resource
• POST: create a new (sub)resource to an existing URI
• DELETE: delete an existing resource
• HEAD: retrieve a meta-data only representation (same as GET

without the entity-body).
• OPTIONS: check which HTTP methods a particular resource supports

• URIs (resource name)
• HTTP response (status and body – JSON)

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 18

STATELESS

• Server does NOT contain any client state.
• Each request contains required context to process

the message.
• Self-descriptive messages.
• The representation contains the state.

• Any session state is held on the client
• One should distinguish between:

• Application state
• Ought to live on the client.
• Can vary by client and per request.

• Resource state
• Ought to live on the server.
• At a given time is the same for all clients.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 19

CLIENT-SERVER ARCHITECTURE

• Assume a disconnected system
• Like any web service based system

• Separations of concerns
• Don’t mix user interface and web services

• The uniform interface is the link between the client
and the server

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 20

CACHEABLE / LAYERED SYSTEM

• Server responses (or representations) must be
cacheable.
• Implicitly.
• Explicitly: the server specifies parameters for caching.
• Negotiated.

• Client can’t assume direct connection to the server.
• There may be intermediaries between the client and the

server.
• This improves scalability.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 21

LINKS AND CONNECTEDNESS

• Very often, representations are hypermedia
• Documents that contain not just data, but links to other

resources.
• HATEOS or Hypermedia as the Engine of Application State

• This means that there no HTTP “session” stored on the server as a
resource state, but rather that the HTTP “session” is tracked by
the client as an application state, and created by the path the
client takes through the Web.

• What it means: resources should link to each other in their
representations whenever it makes sense.
• Counter example: S3 is not connected.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 22

LINKS AND CONNECTEDNESS

[Ayr/c.02] ISC-ID-2a/d // 2023-
2024 23

WHY REST ?

• Compliance with the REST constraints allow
• Scalability

• Statelessness allows easier scalability and load balancing
• For instance, the absence of session does not require balancing to

worry about session affinity.

• Simplicity
• Modifiability
• Visibility
• Portability
• Reliability

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 24

REST TIPS

• Use HTTP verbs to mean something.
• For instance, a GET request must not modify any underlying

resource data.
• Provide sensible resource names.

• Improves understandability of the web service API.
• Use HTTP response codes to indicate status.
• Offer JSON or XML or both for entity-body.
• Create fine-grained resources.

• If requested, it is easier to create aggregate services – that
utilize multiple underlying resources – from fine-grained
resources than the other way around.

• Provide CRUD (Create, Read, Update, Delete) functionality on
those fine-grained resources.

• Consider connectedness. HATEOS

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 25

RESOURCE URI EXAMPLE

• Insert a new customer in a system
• POST http://www.example.com/customers

• To read customer with a given customerID
• GET http://www.example.com/customers/”customerID”

• To create an order for a specific customer
• POST

http://www.example.com/customers/”customerID”/orders
• To read all items of a specific order

• GET
http://www.example.com/customers/”customerID”/orders/
”orderID”

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 26

http://www.example.com/customers
http://www.example.com/customers/%E2%80%9DcustomerID
http://www.example.com/customers/%E2%80%9DcustomerID%E2%80%9D/orders

RESOURCE URI BAD EXAMPLES

• Avoid single URI to specify the service interface,
using query-string parameters to specify the
requested operation and/or HTTP verbs.

• Do not use the GET method for operations which
are not GET as:
• GET

http://www.example.com/customers/”customerID”/update
• Do not use redundant verbs and resources as:

• PUT
http://www.example.com/customers/”customerID”/update

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 27

http://www.example.com/customers/%E2%80%9DcustomerID%E2%80%9D/update
http://www.example.com/customers/%E2%80%9DcustomerID%E2%80%9D/update

	�DEVELOPPEMENT BACKEND�WEBSERVICES / RESTFUL APIS
	WEB SERVICES: A SHORT HISTORY
	WEB SERVICES: A SHORT HISTORY
	WEB SERVICES
	WS-* Web services
	RESTFUL WEB SERVICES
	THE PROGRAMMABLE WEB
	TECHNOLOGIES OF THE PROGRAMMABLE WEB
	WS-* vs RESTful WEB SErvices
	WS-* vs RESTful WEB SErvices
	REST PRINCIPLES
	Resource based
	RESOURCE-ORIENTED ARCHITECTURE
	RESOURCE-ORIENTED Architecture
	RESOURCE-ORIENTED ARCHITECTURE
	REPRESENTATIONS
	REPRESENTATIONS
	UNIFORM INTERFACE
	STATELESS
	CLIENT-SERVER ARCHITECTURE
	Cacheable / LAYERED SYSTEM
	LINKS and Connectedness
	LINKS and Connectedness
	WHY REST ?
	REST TIPS
	Resource URI Example
	RESOURCE URI BAD EXAMPLES

