FL Haute école d’ingénierie et d’architecture Fribourg

=¥/ Hochschule fur Technik und Architektur Freiburg

I\

DEVELOPPEMENT BACKEND
WEBSERVICES / RESTFUL APIS

SERGE AYER - HEIA-FR - ISC

CLASSES ISC-1D-2A/D // 2023-2024



WEB SERVICES: A SHORT HISTORY

* Web sites until 2000

Web HTML Web
browser HTTP server

* The Programmable Web (1998)

WSDL
".
Srowser SOAP/XML Web
(HTTP) server

/client

[Ayr/c.02] ISC-ID-2a/d // 2023-2024



WEB SERVICES: A SHORT HISTORY

« RESTful web services (2000)

V'.

JSON

WADL

Web

lbrowser

/client

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

HTTP

server




WEB SERVICES

« Definition by W3C: A software system designed to
support inferoperable machine-to-machine
Inferaction over a network:

* Involving at least two devices: a (web) server and a client
(e.g. a browser).

* The network is IP, usually using HTTP.

» Usually categorized into two maijor classes:
« WS-* or Arbitrary web services
« REST-compliant web services

[Ayr/c.02] ISC-ID-2a/d // 2023-2024



WS-* WEB SERVICES

» Functionalities and interfaces declared through
WSDL (Web Services Description Language) which is
a machine-processable format.

» Client requests and service response objects are
encapsulated using SOAP (Simple Object Access

Protocol) and tfransmitted over the network using
HTTP.

* These services are usually called WS-* or big web
services.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 5



RESTFUL WEB SERVICES

* Manipulation of representations of Web resources
using a uniform set of stateless operations
- At the core: resources

» Resources are uniguely identified through URIs (Unique
Resources Identifiers)

« Uses URIs to identify resources and HTTP as their service
interface

« RESTful web services for connected objects (smart
things) is usually known as the Web of Things.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024



THE PROGRAMMABLE WEB

» The programmable web is not necessarily for
human consumption.
* |ts data is intended as input to a software program that
does something interesting with it.
* The programmable web is relying on HTTP:

« HTIP is delivering documents in envelopes.
« HTTP does not care about what is in the envelope.

« HTIP is the one thing that all clients and services have in
common on the programmable web.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024



TECHNOLOGIES OF THE
PROGRAMMABLE WEB

HTTP: envelope format

URI

A RESTful, resource-oriented service exposes a URI for every
piece of data the client might want to access.

« A RPC/SOAP service exposes a URI for every process capable
of handling the Remote Procedure Call

- usually called the endpoint and usually unigue.

SOAP: envelope format, on top of HTTP, XML-based

WSDL (Web Service Description Language): XML
vocabulary used to describe SOAP-based web services.

WADL (Web Application Description Language): XML
vocabulary used to describe RESTful web services.

Today, OpenAPl is often used as the standard for
specifying RESTiul web services

[Ayr/c.02] ISC-ID-2a/d // 2023-2024



WS-* VS RESTFUL WEB SERVICES

« The differences are in

* The way the client convey its intentions to the server:
» REST: Using the HTTP methods (standardized).
« SOAP: Using a specific method (like in any programming language)
« very likely using the POST HTTP method.
* The way the client tells to the server which part of the data set
to operate on (scoping information):
« REST: Using the URI path (like “.../searcheg=REST")

e resource oriented

+ SOAP: Using the entity-body of the HTTP request.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024



WS-* VS RESTFUL WEB SERVICES

* When using SOAP:

* Everything is in the envelope (and if you don’t open it, you

don’t understand the request and its response),

* When using a RESTful architecture:

» The request can be understood from the HTTP method and
from the URI.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 10



REST PRINCIPLES

REST == “Representational State Transfer”
Resource-based rather than action-based
Representations moved from server to client
REST is not an architecture but rather a set of design
criteria, which are

« Uniform Interface

* The method information is kept in the HTTP method.
Stateless

Cacheable

Client-Server

Layered System

Code on Demand (optional)

There are a number of architectures that meet those
criteria

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

11



RESOURCE BASED

 Things vs. actions (for SOAP-RPC)

« Nouns Vvs. verbs
« Example: Yuser data” vs. *get user data”

* |dentified by URIs

« Multiple URIs may refer to the same resource

» Resources are separate from their representations

* Very important since there can also be several
representations of the same resource

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

12



RESOURCE-ORIENTED
ARCHITECTURE

* A resource:

« Something that can be stored on a computer and
represented as a stream of data (bits).

* A physical object
* An abstract concept
« Examples:
« Version 2.0 of a software release
The latest release of a software
The sales numbers for Q4 2015
A list of bugs in a bug database
A person
The relationship between two persons

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

13



RESOURCE-ORIENTED
ARCHITECTURE

« Resources are on the web:

« Aresource has to have at least one URI (hame and address
of the resource).

» URIs should be descriptive
* Examples (from previous slide)

« http://www.heia-fr.ch/software/releases/latest

« http://www.heia-fr.ch/relationships/person1;person2

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 14


http://www.heia-fr.ch/software/releases/2.0
http://www.heia-fr.ch/sales/2015/Q4
http://www.heia-fr.ch/bugs/open
http://www.heia-fr.ch/person

RESOURCE-ORIENTED
ARCHITECTURE

» Relationship between URIs and Resources
 Two resources cannot be the same

* More than one URI may refer to the same resource
« Example: the latest release may be version 2.0

« Every URI designates exactly one resource
- Addressability
 Statelessness

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

15



REPRESENTATIONS

 (Part of) the current state of the resource

« Any useful information about the state of a resource.
« Transferred between client and server.

* There can be mulfiple representations of the same
resource:

* A book can be represented with its cover image and
reviews used for advertise the book.

« The same book can be represented by an electronic copy
of the book that can be downloaded via HTTP when you
pay for if.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 16



REPRESENTATIONS

* Typically JSON or XML
« Can also be HTML or CSV or anything else.

* Example:
« Resource: person
 Service: contact information (GET)

* Representation:

 Name, address and phone number
* In JSON or XML format

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

17



UNIFORM INTERFACE

« Defines the intferface between the client and the server
« Simplifies and decouples the architecture

» Typically,
« HTTP verbs / methods
- GET: retrieve the representation of a resource
« PUT: create a new resource
« POST: create a new (sub)resource to an existing URI
« DELETE: delete an existing resource

« HEAD: retrieve a meta-data only representation (same as GET
without the entity-body).

« OPTIONS: check which HTTP methods a particular resource supports

* URIs (resource name)
« HTTP response (status and body — JSON)

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

18



STATELESS

« Server does NOT contain any client state.

« Each request contains required context to process
the message.
 Self-descriptive messages.
» The representation contains the state.

« Any session state is held on the client

« One should distinguish between:

« Application state
« Ought to live on the client.
- Can vary by client and per request.
« Resource state
« Ought to live on the server.
- At a given time is the same for all clients.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

19



CLIENT-SERVER ARCHITECTURE

« Assume a disconnected system
 Like any web service based system

» Separations of concerns
« Don’t mix user interface and web services

* The uniform interface is the link between the client
and the server

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

20



CACHEABLE/LAYERED SYSTEM

« Server responses (or representations) must be
cacheable.
* Implicitly.
* Explicitly: the server specifies parameters for caching.
- Negoftiated.
« Client can’t assume direct connection to the server.

« There may be intermediaries between the client and the
server.

* This improves scalability.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 21



LINKS AND CONNECTEDNESS

* Very often, representations are hypermedia

« Documents that contain not just data, but links To other
resources.
« HATEOS or Hypermedia as the Engine of Application State

« This means that there no HTTP “session” stored on the server as a
resource state, but rather that the HTTP “session” is fracked by
the client as an application state, and created by the path the
client takes through the Web.

 What it means: resources should link to each other in their
representations whenever it makes sense.

+ Counter example: S3 is not connected.

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 22



LINKS AND CONNECTEDNESS

7
N

a b
All three services expose the same functionality, but their usability increases toward the right.

<Service A is a typical RPC-style service, exposing everything through a single URI. It's neither addressable
nor connected.

*Service B is addressable but not connected: there are no indications of the relationships
between resources. This might be a REST-RPC hybrid service, or a RESTful service like Amazon 53.

<Service Cis addressable and well-connected: resources are linked to each other in ways that (presumably)
make sense. This could be a fully RESTful service.

LY MYV NV IV I LN A ] NN

2024 23




WHY REST ?

- Compliance with the REST constraints allow

Scalability

- Statelessness allows easier scalability and load balancing

« For instance, the absence of session does not require balancing to
worry about session affinity.

Simplicity
Modifiability
Visibility
Portability
Reliability

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

24



REST TIPS

Use HTTP verbs to mean something.

* For instance, a GET request must not modify any underlying
resource data.

Provide sensible resource names.
* Improves understandability of the web service API.

Use HTTP response codes to indicate status.
Offer JSON or XML or both for entity-body.

Create fine-grained resources.

 If requested, it is easier to create aggregate services — that
utilize multiple underlying resources — from fine-grained
resources than the other way around.

* Provide CRUD (Create, Read, Update, Delete) functionality on
those fine-grained resources.

Consider connectedness. HATEOS

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 25



RESOURCE URI EXAMPLE

* Insert a new customer in a system
- POST

» To read customer with a given customerlD
- GET

» To create an order for a specific customer
- POST

» To read all items of a specific order
« GET

hittp://www.example.com/customers/"customerlD"/orders/

"orderlD"

[Ayr/c.02] ISC-ID-2a/d // 2023-2024

26


http://www.example.com/customers
http://www.example.com/customers/%E2%80%9DcustomerID
http://www.example.com/customers/%E2%80%9DcustomerID%E2%80%9D/orders

RESOURCE URI BAD EXAMPLES

« Avoid single URI to specity the service interface,
using query-string parameters 1o specify the
requested operation and/or HTTP verbs.

» Do not use the GET method for operations which
are not GET as:
« GET

« Do not use redundant verbs and resources as:
- PUT

[Ayr/c.02] ISC-ID-2a/d // 2023-2024 27


http://www.example.com/customers/%E2%80%9DcustomerID%E2%80%9D/update
http://www.example.com/customers/%E2%80%9DcustomerID%E2%80%9D/update

	�DEVELOPPEMENT BACKEND�WEBSERVICES / RESTFUL APIS
	WEB SERVICES: A SHORT HISTORY
	WEB SERVICES: A SHORT HISTORY
	WEB SERVICES
	WS-* Web services
	RESTFUL WEB SERVICES
	THE PROGRAMMABLE WEB
	TECHNOLOGIES OF THE PROGRAMMABLE WEB
	WS-* vs RESTful WEB SErvices
	WS-* vs RESTful WEB SErvices
	REST PRINCIPLES
	Resource based
	RESOURCE-ORIENTED ARCHITECTURE
	RESOURCE-ORIENTED Architecture
	RESOURCE-ORIENTED ARCHITECTURE
	REPRESENTATIONS
	REPRESENTATIONS
	UNIFORM INTERFACE
	STATELESS
	CLIENT-SERVER ARCHITECTURE
	Cacheable / LAYERED SYSTEM
	LINKS and Connectedness
	LINKS and Connectedness
	WHY REST ?
	REST TIPS
	Resource URI Example
	RESOURCE URI BAD EXAMPLES

