
APPLICATIONS INTERNET
ASYNCHRONOUS WEB APPLICATIONS

S E R G E A Y E R - H E I A - F R – I S C
C L A S S E S I S C - I D - 2 A / D / / 2 0 2 3 - 2 0 2 4

ARE WEB APPLICATIONS
ASYNCHRONOUS?

• Web applications are synchronous in nature:
• The user interacts with the web interface presented in the

browser
• The browser makes requests back to the server based on

that user interaction, and
• The server responds to those requests with new presentation

for the user.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 2

A WEB SYNCHRONOUS
ARCHITECTURE

[Ayr/c.04] ISC-ID-2a/d // 2023-2024

Server - proxyClient application

HTTP

Node.js

Server

HTML / CSS /
Javascript / jQuery

HTTP Proxy
Node.js

3

HTTP request

HTTP

HTTP request

HTTP responseHTTP response

WHY DO WE NEED AN
ASYNCHRONOUS WEB?

• The resource representation delivered to the user
represents a snapshot in time of what is a dynamic
system.

• That snapshot becomes stale in between user
interactions and does not necessarily provide an
accurate view onto the current state of the system.

• For achieving the asynchronous web, the server
needs to be able to send responses back to the
client application spontaneously!

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 4

HOW DO WE IMPLEMENT AN
ASYNCHRONOUS WEB?

• How can this be achieved with the HTTP protocol?
• HTPP is following the request-response model.
• The server cannot send a response to a non-existent

request.
• The request-response mechanism needs to be manipulated.

• The most straight forward way for the web
application to get a more accurate view of the
system is with a basic polling mechanism.
• Polling through XMLHttpRequest/fetch techniques.
• Send requests on a regular basis.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 5

IMPLEMENTING FETCH BASIC
POLLING

• Requires only the use of basic Fetch asynchronous
requests on the client side
• As implemented in the codelabs and your client

application.
• No changes are required on the server side

• The standard HTTP request/response mechanism is not
modified.

• A response to each request is sent synchronously be the
server.

• The only change is that requests are made on a
regular basis
• It gives to the client continuous opportunities to update the

representation of the observed system.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 6

A WEB SYNCHRONOUS
ARCHITECTURE

[Ayr/c.04] ISC-ID-2a/d // 2023-2024

Server - proxyClient application

HTTP

Node.js

Server

HTML / CSS /
Javascript / jQuery

HTTP Proxy
Node.js

7

HTTP request

HTTP

HTTP request

HTTP responseHTTP response

BASIC POLLING

1. The client requests a web page from a server using regular
HTTP.

2. The requested webpage executes Javascript on the client
for issuing requests to the server at regular intervals.

3. The server synchronously computes each response and
sends it back to the client.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 8

IS BASIC POLLING ENOUGH?

• Bringing asynchronous techniques into the client
does not make the web asynchronous!
• Trade-off between timely updates and network load.
• It is possible for multiple server events to occur between

polls.
• It is possible that no server event occurs between polls.
• The potential for a stale view of the system persists.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 9

ALTERNATIVES FOR AN
ASYNCHRONOUS WEB

• Consider HTTP Long Polling:
• The request is made in anticipation of a future response.
• The response is blocked until some event occurs on the

server side.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 10

LONG POLLING

1. A client requests a webpage from a server using regular HTTP (see
HTTP above).

2. The requested webpage executes JavaScript which requests a
resource from the server.

3. The server does not immediately respond with the requested
information but waits until there's new information available.

4. When there's new information available, the server responds with
the new information.

5. The client receives the new information and immediately sends
another request to the server, re-starting the process.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 11

IMPLEMENTING LONG POLLING

• Changes are required on the server side. Why ?
• Remember that HTTP 1.1 is based on permanent

connections
• In HTTP 1.1, a connection is kept alive and reused for

multiple requests.
• This is required for reduced communication lag.

• Processing on the server side requires a request to
be maintained per connection
• Each HTTP connection between a client and a server is

associated with one request on the server side.
• Once a connection is closed, the dedicated request is

destroyed on the server side.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 12

A WEB SYNCHRONOUS
ARCHITECTURE

[Ayr/c.04] ISC-ID-2a/d // 2023-2024

Server - proxyClient application

HTTP

Node.js

Server

HTML / CSS /
Javascript / jQuery

HTTP Proxy
Node.js

13

HTTP long polling
request

HTTP

HTTP long polling
request

HTTP response
to long polling

HTTP response
to long polling

IS LONG POLLING THE ULTIMATE
SOLUTION FOR WOT APPLICATIONS?

• Client have to reconnect periodically after connection is
closed due to timeouts or after data is received.

• This adds a lot of HTTP overhead since it is constantly
establishing and tearing down HTTP connections.

• Is there a way to reduce this overhead, while allowing
the server to send data to the client continuously ?
• The client can open a single long-lived HTTP connection.
• The server then unidirectionally sends data when requested.
• There is no need for the client to request it or do anything but

wait for messages.
• This solution is called Server-Sent Events (SSE) and is

implemented in HTML5 using EventSource

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 14

SERVER-SENT EVENTS

1. A client requests a webpage from a server using

regular HTTP.

2. The requested webpage executes Javascript

which opens a connection to the server - using an

EventSource object.

3. The server sends an event to the client when

there's new information available.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 15

SERVER-SENT EVENTS

• This allows real-time traffic from server to client.
• The server definitely requires asynchronous

processing.
• Invoking an EventSource from another domain

requires special care.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 16

EVENTS STREAM FORMAT

• The event stream message has a “text/event-stream”
Content-Type.

• An event stream is a simple stream of text data which
must be encoded using UTF-8.

• Messages in the event stream are separated by a pair of
newline characters.

• A colon as the first character of a line is in essence a
comment, and is ignored.

• Each message consists of one or more lines of text listing
the fields for that message.

• Each field is represented by the field name, followed by
a colon, followed by the text data for that field's value.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 17

EVENTS STREAM FORMAT

• Fields:
• event: the event’s type.
• data: the data field for the message (the payload)

• Can be JSON
• id: the event’s id.
• retry: the reconnection time.

• Example:
event: text
data: some text

event: userconnect
data: {"username": "bobby", "time": "02:33:48"}

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 18

EVENT SOURCE IMPLEMENTATION

• SSEs are sent over traditional HTTP.
• That means they do not require a special protocol or server

implementation.
• Client side:

• If the connection drops, the EventSource fires an error event
and automatically tries to reconnect.

• The server can also control the timeout before the client
tries to reconnect.

• Server side:
• A server can only accept EventSource requests if the HTTP

request says it can accept the event-stream MIME type.
• A server needs to maintain a list of all the connected users

in order to emit new events.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 19

A WEB SYNCHRONOUS
ARCHITECTURE

[Ayr/c.04] ISC-ID-2a/d // 2023-2024

Server - proxyClient application

HTTP

Node.js

Server

HTML / CSS /
Javascript / jQuery

HTTP Proxy
Node.js

20

SSE request

HTTP

SSE request

SSE messageSSE message

A WEB SYNCHRONOUS
ARCHITECTURE

[Ayr/c.04] ISC-ID-2a/d // 2023-2024

Server - proxyClient application

HTTP

Node.js

Server

HTML / CSS /
Javascript / jQuery

HTTP Proxy
Node.js

21

HTTP

SSE messageSSE message

WEBSOCKETS FOR THE
ASYNCHRONOUS WEB

• Allowing bi-directional communication between
the client and the server can be achieved with
WebSockets.

• WebSockets work without the overhead of an HTTP
protocol.
• It uses its own protocol, which is defined by the IETF (RFC

6455).
• The WebSockets API can be used by web

applications to open and close connections and to
send and receive messages.
• It is defined in a W3C Specification.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 22

http://dev.w3.org/html5/WebSockets/

WEB SOCKETS

1. A client requests a webpage from a server using

regular HTTP.

2. The requested webpage executes JavaScript

which opens a connection with the server.

3. The server and the client can now send each

other messages when new data (on either side) is

available.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 23

WEB SOCKETS

• Real-time traffic from the server to the client and from
the client to the server.

• The server definitely requires asynchronous processing.
• It is possible to connect with a server from another

domain.

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 24

WEB SOCKETS

• Benefits
• Reduce unnecessary network traffic and latency – using full

duplex communication through a single TCP connection
• Streaming through proxies and firewalls, with the support of

upstream and downstream communication simultaneously
• API

• The client must initialize the connection to the server by
creating a WebSocket JavaScript object
var socket = new WebSocket(«ws://echo.websocket.org»)

• Event based API with the following events
• Open - onopen
• Message - onmessage
• Close – onclose
• Error - onerror

• Event handlers are implemented by setting callback functions
or with the help of the addEventListener method

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 25

WEB SOCKETS

• API
• Actions

• send() for sending a message
• close() for closing the connection

• Message content can be
• Text as a string
• Binary data as a ArrayBuffer

• Advantages summarized
• Bi-directional
• Full Duplex
• Single TCP connection (HTTP connection upgraded)

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 26

WRAP UP

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 27

Basic polling Long polling

SSE WebSockets

SPECIFICATIONS OF EVENT-DRIVEN APIS

• As for RESTful APIs, one standard is emerging for
standardizing Event-Driven APIs

AsyncAPI
• Open source initiative
• Make working with Event-Driven APIs as easy as with

RESTful APIs:
• Documentation
• Code generation
• Discovery
• Event management

[Ayr/c.04] ISC-ID-2a/d // 2023-2024 28

https://www.asyncapi.com/docs

	�APPLICATIONS Internet�Asynchronous WEB APPLICATIONS
	ARE WEB APPLICATIONS ASYNCHRONOUS?
	A WEB SYNCHRONOUS ARCHITECTURE
	Why do we need an asynchronous web?
	HOW DO WE IMPLEMENT an asynchronous web?
	Implementing FETCH BASIC POLLING
	A WEB SYNCHRONOUS ARCHITECTURE
	BASIC POLLING
	IS BASIC POLLING ENOUGH?
	ALTERNATIVES FOR AN ASYNCHRONOUS WEB
	LONG POLLING
	Implementing LONG POLLING
	A WEB SYNCHRONOUS ARCHITECTURE
	IS LONG POLLING THE ULTIMATE SOLUTION FOR WOT APPLICATIONS?
	SERVER-SENT EVENTS
	SERVER-SENT EVENTS
	EVENTS STREAM FORMAT
	EVENTS STREAM FORMAT
	EVENT SOURCE IMPLEMENTATION
	A WEB SYNCHRONOUS ARCHITECTURE
	A WEB SYNCHRONOUS ARCHITECTURE
	WEBSOCKETS FOR THE ASYNCHRONOUS WEB
	WEB SOCKETS
	WEB SOCKETS
	WEB SOCKETS
	WEB SOCKETS
	WRAP UP
	Specifications of EVENT-DRIVEN APIS

